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INTRODUCTION

In shallow water environments a number of processes and functions are
regulated by macrophytes and vary according to primary producers typology

Many studies report on the recent evolution of primary producer communities
(Malmer, 1986; Scheffer et al., 2003; Hauxwell & Valiela 2004; Viaroli et al.,
2008).

Basically, natural and anthropogenic eutrophication results in higher nutrients
availability in the water column, higher production by phytoplankton and
epiphyte communities decreased water transparency and progressiveepiphyte communities, decreased water transparency and progressive
disappearance of submersed rooted phanerogams.

In freshwater shallow environments pleustonic communities can developp p
(Scheffer et al., 2003).

Pleustophytes typically colonize the whole water surface, shade the water
column and outcompete other primary producerscolumn and outcompete other primary producers.

Monospecific stands of pleustophytes trigger and maintain anoxic conditions
over long time periods alter the functioning of shallow water bodies and C Nover long time periods, alter the functioning of shallow water bodies and C, N
and P dynamics.
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literature, with detailed
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C fixed >> C released ; C released as CO2 and in minor portion as CH4
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C fixed >= C released ; C released as CO2 and as CH4
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-reoxidation of produced CH4
-rhizome as C reserve
-direct contact between porewater and
atmosphere via aerenchimous tissue
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Pleustophytes

-No light penetration
-anoxia
-CH4 and CO2 supersaturation
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CH4 and CO2 supersaturation
-CH4 and CO2 diffusion in aerenchima
-CO2 net flux dependent on internal and
allochtonous org-C load, CO2 uptake and 
degree of coverage (barrier)
-burial of org-C dependent on litter C/N ratio

org-C
burial of org C dependent on litter C/N ratio

-limited reoxidation of produced CH4 (?)

C fixed >= C released ; C released as CO2 and as CH4

















· Wetlands macrophytes colonize saturated sediments;Wetlands macrophytes colonize saturated sediments;
these plants are characterised by extremely high
productivity, up to 80 ton ha-1y-1 (Wetzel, 1990)-
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· Wetlands plants do act as a “physical sponge”:  
transition areas with elevated retention potentials for 
nutrients

??



Rooted macrophytes colonize an hostile environment…

Flooded soils and sediments have a common feature: 
porewaters are anoxic due to:porewaters are anoxic due to:

-low oxygen solubility in water
-extremely slow diffusion
-sediment porosity and tortuosity

i t d d f l t t f i-respiratory demand of electron acceptors for organic
matter oxidation processes

Resulting anoxia can be coupled to more or less reducing
conditions depending on prevailing microbial metabolism,
quantity and quality of organic matter and sediment
features (i.e. iron availability).
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Mi fili fMicroprofiling of 
sediment cores 
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Biogeochemical processes at the Radial Oxygen Loss
ROL 
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Study areaStudy area

Riverine wetlands, oxbow lakes, peat bogs, shallow eutrophic lakes



Measurements on V spiralisMeasurements on V. spiralis
L f ki• Leaf marking

• Intact cores incubation (light and dark)
• Transplanting in situ growth incubations under• Transplanting, in situ growth, incubations under 

controlled conditions
• Isotope pairing and nitrification coupled denitrificationIsotope pairing and nitrification coupled denitrification 

(injection of 15NH4
+ in porewater)

• Porewater analyses during early sediment colonisation 
stages 

Sand Jensen, 1975; Risgaard Petersen & Jensen, 1997 Daslgaard et 
al., 2000
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Nitrification coupled denitrification
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Porewater CH4
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Submerged macrophyte meadows alter benthic fluxesg p y





Measurements on T natansMeasurements on T. natans

• Biomass evolution
• Net gas Exchange (static chambers) lightNet gas Exchange (static chambers), light 

and dark, 2 weeks frequency, from April to 
September with and without plantsSeptember, with and without plants

• Water column characterisation



Seasonal monitoring of T.natans growth:

Implications for key water column parameters (i e dissolved oxygen)Implications for key water column parameters (i.e. dissolved oxygen)
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Table 1. Physico-chemical features of the water column at the sampled stations C (control 

site: water column devoid of plants) and T (Trapa natans); S=surface, B=bottom. Minimum 

and maximum values were recorded during a 24 hours cycle of investigation carried out on 29 

July 2005 (see text for further details). 

 temperature  pH O2 CO2 CH4 NH4
+ 

 (°C) (µM) (mM) (µM) (µM)

 C T C T C T C T C T C T 

S 25 1÷30 7 25 5÷30 7 6 77÷6 93 6 70÷6 93 6÷215 2÷351 1 24÷2 78 0 97÷2 69 42÷190 90÷223 1 1÷4 3 0 6÷3 8S 25.1÷30.7 25.5÷30.7 6.77÷6.93 6.70÷6.93 6÷215 2÷351 1.24÷2.78 0.97÷2.69 42÷190 90÷223 1.1÷4,3 0.6÷3.8 

B 24.6÷28.6 25.1÷28.7 6.68÷6.79 6.67÷6.89 0÷50 0÷47 1.82÷2.83 1.94÷3.86 184÷325 199÷425 2.1÷15 3.5÷26.5 





CH4 and CO2 fluxes across the water-atmosphere 
at T. natans biomass peak
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Each bar is the average±standard deviation of 3 replicate incubations, positive
values means efflux to the atmosphere, continuous line represents irradiance.



Daily fluxes of CO2 and CH4 at T.natans biomass peak

Methane flux
140

160

entire day 
light period

500

600

entire day 
light period

C
H

4 m
-2

d-1

80

100

120
light period 
dark period 

C
O

2 m
-2

 d
-1

200

300

400
light period 
dark period 

m
m

ol
 

20

40

60

m
m

ol
 C

100

0

100

0

20

C T

Carbon dioxide flux
-200

-100

C T

Data integrated over the vegetative period:

-10.38±3.86 mol CO2 m-2 period-1

+8 82±3 29 mol CH m-2 period-1 CH4 rel:CO2 fix =0.85+8.82±3.29 mol CH4 m-2 period-1 CH4 rel:CO2 fix 0.85



Temperate reed wetland, annual study
50 mol CO2 fixed; 4 mol CH4 released (13 mol reoxidised)50 mol CO2 fixed; 4 mol  CH4 released (13 mol reoxidised)
CH4 rel:CO2 fix=0.09
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Loss of lateral connectivity with main water bodies and loss of functions:
Denitrification efficiency
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Conclusions
Increasing pressures in shallow aquatic 
environments lead to loss of macrophytesenvironments lead to loss of macrophytes 
biodiversity, increase of dominance (monospecific 
stands) and loss of ecosystemic functionsstands) and loss of ecosystemic functions

ConsequencesConsequences
Altered biogeochemical pathways
Sediment and water anoxiaSediment and water anoxia
Lower denitrification
Higher recycling of N and PHigher recycling of N and P
Higher emission of CH4



Thank you for your attention


