La modellizzazione dei processi atmosferici: applicazioni alla realta' dell'Umbria

Stefano Crocchianti

A. Lagana', S. Crocchianti, A. Costantini

Dipartimento di Chimica, Universita' di Perugia

Atmospheric modeling: modeling atmosphere processes

The effects of the emission of pollutants constitute a hazard to human health and to the environment.

EC Directive 96/62/EC recommends a combination of direct measurements and use of models to monitor air quality.

Chemists play a key role in both approaches to understand atmospheric changes and support policymakers.

Models, in particular, are essential to:

- find out what the contribution of source A at site B is
- define cost-effective strategies for reducing pollutants
- show the effect of the addition of a pollutant emission
- show where to place a future source (industry, freeway)
- forecast air quality for the future years

Atmospheric modeling: pollutants types and quantities

Types of atmospheric pollutants:

- **■** gas (O₃, C₆H₆, CO, SO₂, NO_x, ...)
- solid and liquid: aerosol (e.g. SO₄⁻², NH₄⁺, NO₃⁻, Fe, C, ...)

Pollutants quantities depend upon:

- emissions sources (natural or anthropogenic)
- transport and diffusion
- physicochemical transformations

Atmospheric modeling: Chemistry-Transport Model

A Chemistry Transport Model (CTM) should...

start from:

- localized and quantified emissions
- meteorological data (T, P, winds, humidity, ...)

use tools of:

- multi-scale interpolation
- integration of fluidodynamics equations
- kinetics equations

give:

easy to use results for further analysis

Atmospheric modeling: Chimere

Chimere (chemistry-transport model) code created by the Institute Pierre Simon Laplace (Fr).

http://euler.lmd.polytechnique.fr/chimere/

3D Eulerian Chemistry Transport Model (description of atmospheric physical and chemical processes).

Features:

- multi-scale, from urban (100 Km) to international scale
- resolution from 1-2 Km to 100 Km
- long term simulations
- free software (GPL license)
- several vertical resolutions
- several chemical mechanisms
- option of aerosol processes
- parallel (SPMD, MPI) on linux platform

Atmospheric modeling: Chimere purposes

What can be done:

- simulate episodes or long term periods
- operational forecasts
- study emission scenarios
- evaluate strategy effectiveness (reduction plan and pollution control)

What a 3-dimensional atmospheric model needs:

Meteorogical data

- interface to process meteo data
- data interpolation
- transformation to Chimere variables
- creation of a netCDF database

Biogenic emissions

- biogenic emissions preprocessor
- start from land use and emissions potentials for isoprene, terpene, NO
- calculate emissions database (meteo dependent)

Anthropogenic emissions

- start from annual inventory (co, NMVOC, NH3, NOx, PM10, SO2)
- aggregation over SNAP97 sector
- temporal apportioning to hourly values
- speciation to required chemical species
- anthropogenic emissions preprocessor
- creation of a netCDF database

Initial Conditions

- initial concentration of all species
- their influence decays exponentially with the time
- use of a start-up period

Boundary Conditions

- Initial and Boundary Conditions preprocessor
- internal (nesting)
- external (global models: i.e. LMDZINCA2, MOZART2, GOCART)

- time integration of all chemistry-transport equations
- transport
- mixing
- deposition
- absorption
- nucleation
- coagulation
- photolysis
- reaction rates

Primary (directly emitted) and secondary (through primary photochemical reaction) pollution processes:

- **gas phase; scheme** MELCHIOR1 (80 species, 300 reactions) or MELCHIOR2 (44 species, 120 reactions):
- inorganic (O₃, NO_x, CO, OH, SO_x, ...)
- photolysis

- OH attack to organic comp.
- radical recombination
- radical conversion
- Solid/liquid phases (PPM, HNO₃, H₂SO₄, NH₃, biog. SOA, anthrop. SOA, water, NaCl):
 - red-ox of SO₂, O₃, NO₂, H₂O₂
 - catalyzed oxidation
 - coagulation, absorption, nucleation
- heterogeneous chemistry (HO₂, NO_x):
- gas-liquid interface

First results:

- implementation of Chimere version V200606A:
- 8 Xeon HT biprocessor nodes cluster (dep. Mathematics and Informatics, unipg)
- 2 SUN ULTRASPARC biprocessor nodes cluster (dep. Chemistry, unipg)

reproduction of the 2003 benchmark (July-August hot wave)

- creation of interfaces to Chimere for:
- meteo data (LAMI) on Central Italy (CI) domain source: Arpa Emilia Romagna
- Italian biogenic emissions on CI domain source: Arpa Emilia Romagna
- Italian anthropogenic emissions on CI domain source: APAT
- European Boundary Conditions on CI domain source: Prevair (France)
- output visualization (ncview, grads)

Temp_{2m} (279 to 315 K)

Thu Jul 1 2004 08:00

Thu Jul 1 2004 11:00

Thu Jul 1 2004 14:00

Thu Jul 1 2004 17:00

Thu Jul 1 2004 20:00

NO_{biogenic} (0 to 6x10¹¹ molecules/(cm²s))

NO_{anthropogenic} (0 to 3x10¹² molecules/(cm²s))

- simulation of Summer 2004 (Central Italy domain)
- starting 30 Apr 2004; ending 31 Aug 2004
- 8000 5x5 Km grid cells
- gas and aerosol phases
- MELCHIOR2 chemical scheme (44 species, 120 reactions)
- 8 Intel Xeon processors, 124 hours, 30 GB output
- 13 (gas/aerosol) + 190 deposition output species

July, the 1st 2004, O₃ distribution: blue= 22.0 ppb, red= 82.8 ppb.

1st week of July 2004, O₃ concentration (measured vs. calculated)

Atmospheric modeling: Final remark

Work done:

- implemented a Chemistry Transport Model (Chimere)
- applied Chimere to the Air Quality in Umbria

Work in progress:

- paper to be published on Micron (O₃) in collaboration with Arpa Umbria
- paper to be published on "La chimica e l'industria" (PM) in collaboration with Arpa Umbria, Dipartimento di Ingegneria Civile ed Ambientale, Dipartimento di Scienze della Terra

Atmospheric modeling: Final remark

Future work:

- one year simulation and law indices calculation
- model validation and sensitivity to anthropogenic emissions
- future emission scenarios
- sensitivity test to chemical mechanisms
- implementation on EGEE (European Computer Grid)
- implementation of other CTM (CAMx) and comparison

Atmospheric modeling: acknowledgments

Acknowledgments:

M. Vecchiocattivi, M. Angelucci, G. Marchetti *Agenzia Regionale Per l'Ambiente - Umbria*

Institute Pierre-Simon Laplace (C.N.R.S.), INERIS LISA (C.N.R.S.) - France

ARPA Emilia Romagna and ARPA Lombardia

Funds:

COST CMST (action D37) and EGEE III Fondazione Cassa di Risparmio di Perugia Arpa Umbria